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Ex. 2.8 (Shreve)

Independence of random variables can be affected by changes of measure. To illustrate this point, consider the
space of two coin tosses Ω2 = {HH,HT, TH, TT}, and let stock prices be given by

S0 = 4, S1(H) = 8, S1(T ) = 2,

S2(HH) = 16, S2(HT ) = S2(TH) = 4, S2(TT ) = 1.

Consider two probability measures given by

P̃{HH} =
1

4
, P̃{HT} =

1

4
, P̃{TH} =

1

4
, P̃{TT} =

1

4
,

P{HH} =
4

9
, P{HT} =

2

9
, P{TH} =

2

9
, P{TT} =

1

9
.

Define the random variable

X =

{
1 if S2 = 4,

0 if S2 6= 4.

(i) List all the sets in σ(X).

First, recall the definition of a σ-algebra generated by a random variable.

Def. 2.1.3. Let X be a random variable defined on a sample space Ω 6= ∅. The σ-algebra generated by
X, denoted σ(X) is the collection of all subsets of Ω the form {X ∈ C}, where C ranges over the Borel
subsets of R.

So, we have

σ(X) = {∅,Ω, {X = 1}, {X = 0}}
= {∅,Ω, {S2 = 4}, {S2 6= 4}}
= {∅,Ω, {HT, TH}, {HH,TT}} .

(ii) List all the sets in σ(S1).

σ(S1) = {∅,Ω, {S1 = 8}, {S1 = 2}}
= {∅,Ω, {ω ∈ Ω2 : S1 = 8}, {ω ∈ Ω2 : S1 = 2}}
= {∅,Ω, {HH,HT}, {TH, TT}} .

(iii) Show that σ(X) and σ(S1) are independent under the probability measure P̃.

Now, recall the definition of independent σ-algebras and independent random variables.
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Def. 2.2.1. Let (Ω,F ,P) be a probability space, and let G and H be sub-σ-algebras of F (i.e., the sets in
G and the sets in H are also in F). We say these two σ-algebras are independent if

P(A ∩B) = P(A) · P(B), ∀A ∈ G, B ∈ H. (1)

Let X and Y be random variables on (Ω,F ,P). We say these two random variables are independent if
the σ-algebras they generate, σ(X) and σ(Y ), are independent. We say that the random variable X is
independent of the σ-algebra G if σ(X) and G are independent.

Hence, we need to check whether ∀A ∈ σ(X) and ∀B ∈ σ(S1) the probability (given the appropriate
probability measure) of an intersection A ∩ B factorises according to (1). Let us consider only the non-
trivial cases (i.e. the sets A,B /∈ {∅,Ω}).

A ∈ σ(X) B ∈ σ(S1) A ∩B P̃(A) · P̃(B) P̃(A ∩B)

{HT, TH} {HH,HT} {HT} ( 1
4 + 1

4 ) · ( 1
4 + 1

4 ) = 1
4

1
4

{HT, TH} {TH, TT} {TH} ( 1
4 + 1

4 ) · ( 1
4 + 1

4 ) = 1
4

1
4

{HH,TT} {HH,HT} {HH} ( 1
4 + 1

4 ) · ( 1
4 + 1

4 ) = 1
4

1
4

{HH,TT} {TH, TT} {TT} ( 1
4 + 1

4 ) · ( 1
4 + 1

4 ) = 1
4

1
4

So, indeed, ∀A ∈ σ(X) and ∀B ∈ σ(S1) condition (1) holds, i.e. P̃(A ∩ B) = P̃(A) · P̃(B), which means
that the σ-algebras σ(X) and σ(S1) are independent under P̃, and so are the random variables X and S1.

(iv) Show that σ(X) and σ(S1) are not independent under the probability measure P.

Similarly as in the previous point, consider only the non-trivial cases.

A ∈ σ(X) B ∈ σ(S1) A ∩B P(A) · P(B) P(A ∩B)

{HT, TH} {HH,HT} {HT} ( 2
9 + 2

9 ) · ( 2
9 + 4

9 ) = 8
27

2
9

{HT, TH} {TH, TT} {TH} ( 2
9 + 2

9 ) · ( 2
9 + 1

9 ) = 4
27

2
9

{HH,TT} {HH,HT} {HH} ( 4
9 + 1

9 ) · ( 2
9 + 4

9 ) = 10
27

4
9

{HH,TT} {TH, TT} {TT} ( 4
9 + 1

9 ) · ( 2
9 + 1

9 ) = 1
4

1
9

So, we can see that ∃A ∈ σ(X) and ∃B ∈ σ(S1) such that P(A ∩B) 6= P(A) · (P )(B)1, which means that
the σ-algebras σ(X) and σ(S1) are not independent under P, so neither are the random variables X and
S1.

(v) Under P, we have P{S1 = 8} = 2
3 and P{S1 = 2} = 1

3 . Explain intuitively why, if you are told that X = 1,
you would want to revise your estimate of the distribution of S1.

Since under P the random variables X and S1 are not independent, the knowledge of the realisation of
X is informative about the realisation of S1, as it helps to revise our beliefs regarding the distribution of
S1. More precisely, if we know X = 1 then necessarily S2 = 4, which means that either HT or TH has
occured. And since P(HT ) = P(TH) = 2

9 , we can update the initial beliefs about S1 and estimate P{S1)
using the formula for conditional probability

P(S1 = 8|X = 1) =
P(S1 = 8, X = 1)

P(X = 1)
=

2
9
4
9

=
1

2
= P(S1 = 2|X = 1).

1Actually, we have shown that for no non-trivial subsets of Ω2 condition (1) is satisfied.
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Ex. 2.10 (Shreve)

Let X and Y be random variables (on some unspecified probability space (Ω,F ,P)), assume they have a joint
density fX,Y (x, y), and assume E|Y | <∞. In particular, for every Borel subset C of R, we have

P{(X,Y ) ∈ C} =

∫
C

fX,Y (x, y)dxdy.

In elementary probability, one learns to compute E[Y |X = x], which is a nonrandom function of the dummy
variable x, by the formula

E[Y |X = x] =

∫ ∞
−∞

yfY |X(y|x)dy, (2.6.1)

where fY |X(y|x) is the conditional density defined by

fY |X(y|x) =
fX,Y (x, y)

fX(x)
.

The denominator in this expression, fX(x) =
∫∞
−∞ fX,Y (x, η)dη, is the marginal density of X, and we must

assume it is strictly positive for every x. We introduce the symbol g(x) for the function E[Y |X = x] defined by
(2.6.1) i.e.,

g(x) =

∫ ∞
−∞

yfY |X(y|x)dy =

∫ ∞
−∞

y
fX,Y (x, y)

fX(x)
dy.

In measure-theoretic probability, conditional expectation is a random variable E[Y |X]. This exercise is to show
that when there is a joint density for (X,Y ), this random variable can be obtained by substituting the random
variable X in place of the dummy variable x in the function g(x). In other words, this exercise is to show that

E[Y |X] = g(X).

(We introduced the symbol g(x) in order to avoid the mathematically confusing expression E[Y |X = X].) Since
g(X) is obviously σ(X)-measurable, to verify that E[Y |X] = g(X) we need only check that the partial-averaging
property is satisfied. For every Borel-measurable function h mapping R to R and satisfying E|h(X)| < ∞, we
have

Eh(X) =

∫ ∞
−∞

h(x)fX(x)dx. (2.6.2)

This is Theorem 1.5.2 in Chapter 1. Similarly, if h is a function of both x and y, then

Eh(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

h(x, y)fX,Y (x, y)dxdy (2.6.3)

whenever (X,Y ) has a joint density fX,Y (x, y). You may use both (2.6.2) and (2.6.3) in your solution to this
problem.
Let A be a set in σ(X). By the definition of σ(X) there is a Borel subset B of R such that A = {ω ∈ Ω :
X(ω) ∈ B} or, more simply, A = {X ∈ B}. Show the partial-averaging property∫

A

g(X)dP =

∫
A

Y dP.

For sake of completeness, recall the definition of conditional expectation.

Def. 2.3.1. Let (Ω,F ,P) be a probability space, let G be a sub-σ-algebra of F , and let X be a random variable
that is either nonnegative or integrable. The conditional expectation of X given G, denoted E[X|G], is any
random variable that satisfies

(i) (Measurability) E[X|G] is G-measumble, and

(ii) (Partial averaging) ∫
A

E[X|G](ω)dP(ω) =

∫
A

X(ω)dP(ω), ∀A ∈ G. (2.3.17)
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If G is the σ-algebra generated by some other random variable W (i.e., G = σ(W )), we generally write E[X|W ]
rather than E[X|σ(W )].

Using the introduced notation, we have ∀A ∈ σ(X), A = {X ∈ B},∫
A

g(X)dP =

∫
{ω∈Ω:X∈B}

g(X(ω))dP(ω)

=

∫
Ω

I{X∈B}g(X(ω))dP(ω)

=

∫ ∞
−∞

I(x ∈ B)g(x)fX(x)dx

=

∫ ∞
−∞

I(x ∈ B)

[∫ ∞
−∞

y
fX,Y (x, y)

fX(x)
dy

]
fX(x)dx

=

∫ ∞
−∞

∫ ∞
−∞

I(x ∈ B)y
fX,Y (x, y)

fX(x)
fX(x)dydx

=

∫ ∞
−∞

∫ ∞
−∞

I(x ∈ B)yfX,Y (x, y)dxdy

(2.6.3)
= E[I{X∈B}Y ]

(2.6.2)
= E[IAY ]

=

∫
A

Y dP,

which completes the proof.

Ex. 2.4 (Shreve)

In Example 2.2.8, X is a standard normal random variable and Z is an independent random variable satisfying

P{Z = 1} = P{Z = −1} =
1

2
.

We defined Y = XZ and showed that Y is standard normal. We established that although X and Y are
uncorrelated, they are not independent. In this exercise, we use moment-generating functions to show that Y is
standard normal and X and Y are not independent2.

(i) Establish the joint moment-generating function formula

EeuX+vY = e
1
2 (u2+v2) · e

uv + e−uv

2
. (2)

There are at least two ways to show this.

1◦ By the definition,

EeuX+vY =

∫ ∞
−∞

∫ ∞
−∞

eux+vxzdµZ(z)dµX(x)

=

∫ ∞
−∞

[
1

2
eux+vx·1 +

1

2
eux+vx·(−1)

]
dµX(x)

=
1

2

∫ ∞
−∞

e(u+v)xdµX(x) +
1

2

∫ ∞
−∞

e(u−v)xdµX(x)

= Ee(u+v)X + Ee(u−v)X

=
1

2
e

(u+v)2

2 +
1

2
e

(u−v)2

2

= e
u2+v2

2 · e
uv + e−uv

2
.

2Note: it is a fact that independent random variables are uncorrelated. The converse is not true, even for normal random
variables, although it is true of jointly normal random variables (cf. Shreve, p. 62, the comment to thm. 2.2.7 and example 2.2.10).
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2◦ Using the law of total probability,

EeuX+vY = EeuX+vXZ

= E
[
euX+vXZ |Z = 1

]
P(Z = 1) + E

[
euX+vXZ |Z = −1

]
P(Z = −1)

=
1

2
EeuX+vX +

1

2
EeuX−vX

= e
u2+v2

2 · e
uv + e−uv

2
.

(ii) Use the formula above to show that EevY = e
1
2 v

2

. This is the moment generating function for a standard
normal random variable, and thus Y must be a standard normal random variable.

Take u = 0 in (2). Then,

EevY = e
v2

2 · e
0 + e0

2
= e

v2

2 .

Hence, Y is indeed a standard normal variable.

(iii) Use the formula in (i) and Theorem 2.2.7(iv) to show that X and Y are not independent.

Recall theorem concerning independent random variables.

Thm. 2.2.7. Let X and Y be random variables. The following conditions are equivalent.

(i) X and Y are independent.

(ii) The joint distribution measure factors:

µX,Y (A×B) = µX(A) · µY (B), ∀A,B ∈ B(R). (2.2.8)

(iii) The joint cumulative distribution function factors:

FX,Y (a, b) = FX(a) · FY (b), ∀a, b ∈ R. (2.2.9)

(iv) The joint moment-generating function factors:

EeuX+vY = EeuX · EevY (2.2.10)

for all u, v ∈ R for which the expectations are finite.

(v) The joint density factors3:

fX,Y (x, y) = fX(x) · fY (y), for almost every x, y ∈ R. (2.2.11)

We have

EeuX = e
u2

2 ,

EevY = e
v2

2 ,

EeuX · EevY = e
u2

2 · e v2

2 = e
u2+v2

2 ,

hence

EeuX+vY = e
u2+v2

2 · e
uv + e−uv

2
6= e

u2+v2

2 = EeuX · EevY .

By theorem 2.2.7 (iv) X and Y cannot be independent.

3If there is a joint density.
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